SPRING 2019

Particle	Symbol	Description
Neutron	${}^{1}_{0}n$	Mass approximately equal to proton, but no charge
Proton	${}^{1}_{1}$ H or ${}^{1}_{1}$ p	Nuclei of a hydrogen atom
Deuteron	${}_{1}^{2}$ H or ${}_{1}^{2}$ D	Nuclei of a hydrogen atom with 2 neutrons
Electron	0 C or 0 o	(High onergy) electrons
(β particle)	$_{-1}p \text{ or }_{-1}e$	(Ingli-energy) electrons
Positron	${}^{0}_{+1}\beta \text{ or } {}^{0}_{+1}e$	Same mass as electron, but positive charge
α particle	${}_{2}^{4}\alpha$ or ${}_{2}^{4}$ He	(High-energy) helium nuclei (2 protons + 2 neutrons)

1. Complete each nuclear reaction given below.

A)
$$^{222}_{86}\text{Rn} \rightarrow ^{218}_{84}\text{Po} + \underline{?}$$

- B) $^{131}_{53}I \rightarrow ^{131}_{54}Xe + \underline{?}$
- C) ${}^{11}_{6}C \rightarrow \underline{?} + {}^{0}_{+1}\beta$
- D) Electron capture by cadmium-104 ($^{104}_{48}$ Cd)
- E) ${}^{235}U + {}^{1}_{0}n \rightarrow {}^{147}Pm + 2{}^{1}_{0}n + \underline{?}$
- 2. Mercury-197 has a half-life of 65 hours. What fraction of a mercury sample remains after 6 days?

Rate =
$$kN$$
 $t_{1/2} = \frac{\ln 2}{k}$ $t = -\frac{1}{k}\ln\frac{N_t}{N_0}$

3. Both carbon-14 and potassium-40 can be used for radiometric dating. The half-life of ${}^{14}C$ is 5730 years and the half-life of ${}^{40}K$ is 1.28×10^9 years.

Rate =
$$kN$$
 $t_{1/2} = \frac{\ln 2}{k}$ $t = -\frac{1}{k}\ln\frac{N_t}{N_0}$

A) If a rock is predicted to be 20,000 years old, which form of radio dating is preferred? Why?

B) If a rock is predicted to be 200,000 years old, neither method is preferred. Why?

- 4. Silicon-28 can be made by many different nuclear fusion reactions.
 - A) Which of the two fusion reactions releases the greater amount of energy? Recall $\Delta E = \Delta mc^2$ where $c = 3.00 \times 10^8$ m/s and $1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$.
 - i. ${}^{14}N + {}^{14}N \rightarrow {}^{28}Si$ ${}^{14}N = 14.00307 \text{ amu}$ ${}^{28}Si = 27.97693 \text{ amu}$
 - ii. ${}^{16}O + {}^{12}C \rightarrow {}^{28}Si$ ${}^{16}O = 15.99491 \text{ amu}$ ${}^{12}C = 12.00000 \text{ amu}$

B) Propose a nuclear reaction that could produce an isotope of Si.