1. Consider the Gibbs free energy relationship

$$\Delta G = \Delta H - T \Delta S$$

Determine the <u>temperature</u> at which the following reaction conditions would be spontaneous:

Reaction	ΔS	ΔΗ	Spontaneous	$(\Delta G < 0)$ at		
A)	positive	positive	all Temps	<u>high Temps</u>	low Temps	no Temps
B)	positive	negative	all Temps	high Temps	low Temps	no Temps
C)	negative	positive	all Temps	high Temps	low Temps	no Temps
D)	negative	negative	all Temps	high Temps	<u>low Temps</u>	no Temps

- 2. Ammonia (NH₃) is a weak base in water with a $K_b = 1.8 \times 10^{-5}$.
 - A) Calculate the Gibbs free energy change (ΔG°) for the dissociation of ammonia in water from the table of thermodynamic properties at 298.15 K.

	NH ₃ (aq)	NH ₄ + (aq)	$H_2O(l)$	OH- (aq)
$\Delta H_{\mathrm{f}}^{\circ} \left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	-80.3	-132.5	-285.8	-230.0
$\Delta S^{\circ} \left(\frac{J}{mol \cdot K} \right)$	111.3	113.4	69.9	-10.8

First, write out the balanced chemical equation:

$$NH_3$$
 (aq) + H_2O (I) $\rightleftharpoons NH_4^+$ (aq) + OH^- (aq)

Second, calculate the standard enthalpy and entropy changes:

$$\Delta H^{\circ} = -132.5 \frac{\text{kJ}}{\text{mol}} + \left(-230.0 \frac{\text{kJ}}{\text{mol}}\right) - \left(-80.3 \frac{\text{kJ}}{\text{mol}}\right) - \left(-285.8 \frac{\text{kJ}}{\text{mol}}\right) = 3.6 \frac{\text{kJ}}{\text{mol}}$$

$$\Delta S^{\circ} = 113.4 \frac{\text{J}}{\text{mol} \cdot \text{K}} + \left(-10.8 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) - 111.3 \frac{\text{J}}{\text{mol} \cdot \text{K}} - 69.9 \frac{\text{J}}{\text{mol} \cdot \text{K}} = -78.6 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$

Third, calculate the standard free energy change:

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= \left(3.6 \frac{\text{kJ}}{\text{mol}} \times \frac{1000 \text{ J}}{1 \text{ kJ}}\right) - (298.15 \text{ K}) \left(-78.6 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right)$$

$$\Delta G^{\circ} = 2.7 \times 10^{4} \frac{\text{J}}{\text{mol}}$$

B) Is the dissociation of NH₃ in water spontaneous or nonspontaneous?

Nonspontaneous

C) Calculate the equilibrium constant (K_b) for NH₃ based on its ΔG° from part A. Recall that:

$$\Delta G^{\circ} = -RT \ln K$$
 $K = e^{-\Delta G^{\circ}/RT}$ $R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$

$$K_{b} = \exp\left\{-\frac{\Delta G^{\circ}}{RT}\right\}$$

$$= \exp\left\{-\frac{2.7 \times 10^{4} \frac{J}{\text{mol}}}{\left(8.314 \frac{J}{\text{mol} \cdot \text{K}}\right) (298.15 \text{ K})}\right\}$$

$$K_{b} = 1.8 \times 10^{-5}$$

D) The phrases "spontaneous" and "nonspontaneous" may <u>mislead</u> you into believing that certain reactions will or will not take place. This is a misconception though.

What does the magnitude and sign of the ΔG° value tell us about the reaction?

Hint: Consider the relationship between ΔG° and K in part C.

The sign of ΔG° tells us whether the equilibrium favors the reactants ($\Delta G^{\circ} > 0$) or the products ($\Delta G^{\circ} > 0$) at equilibrium. In other words, this is simply a transformation of the equilibrium constant, K.

- 3. For each reaction, predict the sign of the entropy change.
 - A) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

Entropy decreases going from reactants to products \rightarrow more ordered $\rightarrow \Delta S < 0$

B)
$$2 C_6 H_6 (l) + 15 O_2 (g) \rightarrow 6 CO_2 (g) + 3 H_2 O (l)$$

Entropy decreases going from reactants to products \rightarrow more ordered $\rightarrow \Delta S < 0$

4. What is the free energy change (ΔG) for the process shown under the specified conditions?

$$2 \text{ NH}_3 (g) \rightleftharpoons \text{N}_2 (g) + 3 \text{ H}_2 (g)$$
 $\Delta G^\circ = 33.0 \text{ kJ/mol}$ $T = 25 \,^{\circ}\text{C}$ $P_{\text{NH}_3} = 12.9 \text{ atm}$ $P_{\text{N}_2} = 0.870 \text{ atm}$ $P_{\text{H}_2} = 0.250 \text{ atm}$

Recall that the reaction quotient for this reaction can be expressed as:

$$Q = \frac{P_{N_2} P_{H_2}^3}{P_{NH_2}^2}$$

And that we can calculate nonstandard free energy changes via:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$= \left(33.0 \frac{\text{kJ}}{\text{mol}} \times \frac{1000 \text{ J}}{1 \text{ kJ}}\right) + \left(8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) (298.15 \text{ K}) \ln \left[\frac{(0.870)(0.250)^3}{(12.9)^2}\right]$$

$$\Delta G = 9680 \frac{\text{J}}{\text{mol}}$$