1. Consider the Gibbs free energy relationship

$$\Delta G = \Delta H - T \Delta S$$

Determine the <u>temperature</u> at which the following reaction conditions would be spontaneous:

Reaction	ΔS	ΔH	Spontaneous ($\Delta G < 0$) at			
A)	positive	negative	all Temps	high Temps	low Temps	no Temps
B)	positive	positive	all Temps	high Temps	low Temps	no Temps
C)	negative	positive	all Temps	high Temps	low Temps	no Temps
D)	negative	negative	all Temps	high Temps	low Temps	no Temps

- 2. Ammonia (NH₃) is a weak base in water with a $K_b = 1.8 \times 10^{-5}$.
 - A) Calculate the Gibbs free energy (ΔG°) of the ammonia dissociation in water from the table of thermodynamic properties at 298.15 K.

	NH_3 (aq)	NH ₄ + (aq)	$H_2O(l)$	OH⁻ (aq)
$\Delta H^{\circ} \left(\frac{\mathrm{kJ}}{\mathrm{mol}} \right)$	-80.3	-132.5	-285.8	-230.0
$\Delta S^{\circ} \left(\frac{J}{\mathrm{mol} \cdot \mathrm{K}} \right)$	111.3	113.4	69.9	-10.8

B) Is the dissociation of NH₃ in water spontaneous or nonspontaneous?

C) Calculate the equilibrium constant (K_b) for NH₃ based on its ΔG° from part A. Recall that:

 $\Delta G^{\circ} = -RT \ln K \quad K = e^{-\Delta G^{\circ}/RT} \quad R = 8.314 \frac{J}{\text{mol} \cdot K}$

D) The phrases "spontaneous" and "nonspontaneous" may <u>mislead</u> you into believing that certain reactions will or will not take place. This is a misconception though.

What does the magnitude and sign of the ΔG° value tell us about the reaction?

Hint: Consider the relationship between ΔG° and K in part C.

- 3. For each reaction, predict the sign of the entropy change.
 - A) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$
 - B) $2 C_6 H_6 (l) + 15 O_2 (g) \rightarrow 6 CO_2 (g) + 3 H_2 O (l)$
- 4. What is the free energy change (ΔG) for the process shown under the specified conditions?

$$2 \text{ NH}_{3}(g) \rightleftharpoons \text{N}_{2}(g) + 3 \text{ H}_{2}(g) \qquad \Delta G^{\circ} = 33.0 \text{ kJ/mol}$$

$$T = 25 \text{ °C} \qquad P_{\text{NH}_{3}} = 12.9 \text{ atm} \qquad P_{\text{N}_{2}} = 0.870 \text{ atm} \qquad P_{\text{H}_{2}} = 0.250 \text{ atm}$$