- 1. A 0.050 M solution of weak acid, HA, has a pH = 2.23 at 25 °C.
 - A) Write a balanced chemical equilibrium equation for this system/reaction.

HA (aq) \rightleftharpoons H⁺ (aq) + A⁻ (aq)

B) Write an expression for K_a for the weak acid dissociation equilibrium.

$$K_{\rm a} = \frac{[\rm H^+][\rm A^-]}{[\rm HA]}$$

C) At equilibrium, determine the value of $[H^+]$ (or $[H_3O^+]$). Because they tell us that pH = 2.23 (at equilibrium), we know that

$$[H^+] = 10^{-pH} = 10^{-2.23} = 5.9 \times 10^{-3} M$$

D) What is the percent ionization of this acid? Percent ionization for an acid will always be:

% ionization =
$$\frac{[\text{H}^+]_{\text{eq}}}{[\text{HA}]_{\text{initial}}} \times 100\% = \frac{5.8_8 \times 10^{-3} \text{ M}}{0.050 \text{ M}} \times 100\% = 12\%$$

E) What is the value of K_a for this acid? To find K_a , set up an ICE chart, and plug in the equilibrium concentrations.

	HA (aq)	⇒	H+ (aq)	+	A- (aq)
1	0.050 M		0 M		0 M
С	- x		+ X		+ X
Е	0.050 – x		X		X

In the ICE chart, replace x with the answer we found in part C.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm A}^-]}{[{\rm HA}]} = \frac{{\rm x}^2}{0.050 - {\rm x}} = \frac{\left(5.8_8 \times 10^{-3}\right)^2}{0.050 - 5.8_8 \times 10^{-3}} = 7.9 \times 10^{-4}$$

F) Without any calculations: If we increase the volume by 10×, do you expect the percent ionization to increase, decrease, or stay the same? What about the pH? Why?

Hint: What is Q immediately after adding more water? Increasing the volume would decrease the concentrations, and $Q_a < K_a$. The system will respond by shifting equilibrium to the side with a greater number of moles (to the right) in order to increase the concentrations. Therefore, percent ionization would increase, and pH increases because of dilution.

2. What is the pH of a 0.200 M solution of $C_6H_5NH_2$ if its $pK_b = 9.40$? First, determine K_b from pK_b :

Because K_b is small, this is a weak base, and we can set up the weak base equilibrium ICE c $C_6H_5NH_2$ (aq) + $H_2O(I)$ \Rightarrow $C_6H_5NH_{3^+}$ (aq) + OH^- (aq)	$K_{\rm b} = 10^{-pK_{\rm b}} = 10^{-9.40} = 3.9_8 \times 10^{-10}$										
	Because <i>K</i> _b is small, this is a weak base, and we can set up the weak base equilibrium ICE chart:										
C_{61} C_{51} C_{61} C											
I 0.200 M n/a 0 M 0 M											
C – x n/a + x + x											
E 0.200 – x n/a x x											

Set up the K_b expression, approximate x to be small, and solve for pOH and pH:

$$K_{b} = \frac{[C_{6}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}NH_{2}]}$$

$$B.9_{8} \times 10^{-10} \approx \frac{x^{2}}{0.200}$$

$$x = 8.9_{2} \times 10^{-10} = [OH^{-}]$$

$$pOH = -\log[OH^{-}] = -\log(8.9_{2} \times 10^{-10}) = 5.04_{9}$$

$$pH + pOH = 14$$

$$pH = 14 - 5.04_{9}$$

$$pH = 8.95$$

3. What is the pH of a 1.5×10^{-7} M solution of Ba(OH)₂? Before you start this problem, do you expect the pH to be <7, ~7, or >7?

You may tempted to say pH > 7 because Ba(OH)₂ is a strong base, but <u>pH ~7 because it's very dilute</u> here. Because the solution is dilute, the dominant process is actually the acid-base equilibrium of water itself! However, we start with some initial amount of OH-, which is supplied by the dissociation of Ba(OH)₂: Ba(OH) = Ba(CH) + Ba(CH) + Ba(CH) + Ca(CH) + Ca(CH

				\rightarrow Ba ²⁺ (aq) +		
	[OH	$[^{-}] = \frac{1.5 \times 10}{100}$	⁻⁷ mol Ba 1 L	$\frac{1(OH)_2}{1 \text{ mol}} \times \frac{2 \text{ m}}{1 \text{ mol}}$	nol OH ⁻ I Ba(OH	$\frac{1}{1}$ = 3.0 × 10 ⁻⁷ M
Set up an ICE c	hart for tl	he acid-base	equilibriu	m of water:		
		H ₂ O (I)	⇒	H+ (aq)	+	OH- (aq)
	I	n/a		0 M		3.0 × 10 ⁻⁷ M
	С	n/a		+ X		+ X
	E	n/a		X		3.0 × 10 ⁻⁷ + x
Set up the K _w ex	pression	n, solve for x,	and solve	e for pH:		
		[H ⁺][OH ⁻]			р	$H = -\log[H^+]$
1.0 ×		$(3.0 \times 10^{-7} +$				$= -\log(3.0_3 \times 10^{-8})$
	x =	$3.0_3 \times 10^{-8} =$	= [H+]		р	H = 7.52

4. Rank the following in order of increasing acid strength.

 $\begin{array}{ccc} H_2SeO_4 & H_2SO_4 & H_2SeO_3 & H_2SO_3 \\ Hint: Draw a Lewis structure for the conjugate-base of H_2SO_4. \end{array}$

 $H_2SO_4 > H_2SeO_4 > H_2SO_3 > H_2SeO_3$

- 5. You make a 1.00 L solution that is 0.120 M HNO₂ and 0.150 M NaNO₂, K_a of HNO₂ = 4.0 × 10⁻⁴.
 - A) Calculate the pH of this buffer.

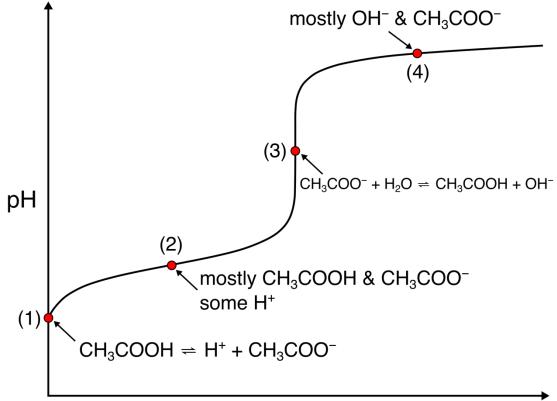
The salt dissociates completely via: $NaNO_2$ (aq) $\rightarrow Na^+$ (aq) $+ NO_2^-$ (aq) We can set up a weak-acid/conjugate-base equilibrium ICE chart: HNO₂ (aq) \rightarrow H+ (aq) + NO2- (aq) 0.120 M 0 M 0.150 M С - x + X + X Е 0.120 - x0.150 + xХ

You may set up an expression for K_a , approximate x as small, solve for x, and then pH. Or you can apply the Henderson-Hasselbach equation and approximate x to be small:

$$pH = pK_a + \log \frac{[NO_2^-]}{[HNO_2]} = -\log(4.0 \times 10^{-4}) + \log \left(\frac{0.150 + x}{0.120 - x}\right) \approx 3.39_8 + \log \left(\frac{0.150}{0.120}\right) = 3.49$$

B) Calculate the pH after 1.00 mL of 11.6 M HCl is added to the buffer solution. Note the HCl will react with the conjugate-base (NO₂-), so:

	HNO ₂ (aq)		H+ (aq)	+	NO ₂ - (aq)				
1	0.120 mol		0.0116 mol		0.150 mol				
С	+ 0.0116		- 0.0116		- 0.0116				
"E"	0.131 ₆		0		0.1384				
pH =	$\frac{1}{\text{pH} = \text{p}K_{\text{a}} + \log \frac{[\text{NO}_2^-]}{[\text{HNO}_2]} \approx 3.39_8 + \log \left(\frac{0.138_4 \text{ mol}/1.001 \text{ L}}{0.131_6 \text{ mol}/1.001 \text{ L}}\right) = 3.42$								


C) Calculate the pH after 1.00 mL of 11.6 M NaOH is added to the buffer solution. Note the NaOH will react with the acid (HNO₂), so:

				,					
	HNO ₂ (aq)	+	OH- (aq)	⇒	NO ₂ - (aq)	+	H ₂ O (I)		
1	0.120 mol		0.0116 mol		0.150 mol		n/a		
С	- 0.0116		- 0.0116		+ 0.0116		n/a		
Е	0.1084		0		0.161 ₆		n/a		
	$pH = pK_a + \log \frac{[NO_2^-]}{[HNO_2]} \approx 3.39_8 + \log \left(\frac{0.161_6 \text{ mol}/1.001 \text{ L}}{0.108_4 \text{ mol}/1.001 \text{ L}}\right) = 3.57$								

Se

- 6. You are titrating 2.0 mL of 1.0 M acetic acid (CH₃COOH, $K_a = 1.76 \times 10^{-5}$) with 1.0 M NaOH.
 - A) Below is a sketch of the titration curve. At each labelled point, write the chemical species you would expect to find in solution.

I did point (1) for you in the form of an equilibrium expression.

Volume NaOH added

B) Calculate the pH before any NaOH is added, point (1).
 Because we haven't added any NaOH yet, this is just a weak-acid equilibrium problem.

		CH₃COOH (aq)	⇒	H+ (aq)	+	CH₃COO⁻ (aq)
	1	1.0 M		0 M		0 M
	С	- x		+ X		+ X
	Е	1.0 – x		x		x
et up the I	K _a exp	pression, approxima	ate x to	be small, and s	solve fo	or pH:
		[H ⁺][CH ₃ COO	-]			
		K =				and the second s

$$K_{a} = \frac{1}{[CH_{3}COOH]} pH = -\log[H^{+}]$$

$$1.76 \times 10^{-5} \approx \frac{x^{2}}{1.0} pH = 2.38$$

$$x = 0.0041_{95} = [H^{+}]$$

C) Calculate the pH after 0.5 mL of NaOH is added.

Begiı	Begin by figuring out the non-equilibrium reaction that takes place:									
	CH₃COOH (aq)	+	OH⁻ (aq)	4	CH₃COO⁻ (aq)	+	H ₂ O (I)			
1	0.0020 mol		0.0005 mol		0 mol		n/a			
С	- 0.0005		- 0.0005		+ 0.0005		n/a			
"E"	0.0015		0		0.0005		n/a			

Apply the Henderson-Hasselbach equation and approximate x to be small:

pH = pK_a + log
$$\frac{[CH_3COO^-]}{[CH_3COOH]} \approx 4.75_4 + log \left(\frac{0.0005 \text{ mol}/0.0025 \text{ L}}{0.0015 \text{ mol}/0.0025 \text{ L}}\right) = 4.28$$

D) How much NaOH is required to get to point (2) if the pH = pK_a ? Begin by figuring out the non-equilibrium reaction that would take place.

Degin	begin by righting out the non-equilibrium reaction that would take place.								
	CH₃COOH (aq)	+	OH⁻ (aq)	⇒	CH₃COO⁻ (aq)	+	H ₂ O (I)		
1	0.0020 mol		x mol		0 mol		n/a		
С	- x		- x		+ X		n/a		
"E"	0.0020 – x		0		X		n/a		

Because point (2) is well within the buffer region, we can apply the Henderson-Hasselbach equation:

$$pH = pK_a + \log \frac{[CH_3C00^-]}{[CH_3C00H]}$$

$$4.75_4 = 4.75_4 + \log \frac{x}{0.0020 - x}$$

$$0 = \log \frac{x}{\frac{x}{0.0020 - x}}$$

$$1 = \frac{x}{\frac{x}{0.0020 - x}}$$

$$x = 0.0010 \text{ mol OH}^-$$

- E) Do you expect the pH at the equivalence point to be <7, 7, or >7?pH > 7 because this is a weak acid + strong base titration.
- F) Calculate the pH at the equivalence point, point (3).

At the	At the equivalence point, $n_{\rm HA} = n_{\rm OH^-}$:									
	CH₃COOH (aq)	+	OH- (aq)	4	CH₃COO⁻ (aq)	+	H ₂ O (I)			
1	0.0020 mol		0.0020 mol		0 mol		n/a			
С	- 0.0020		- 0.0020		+ 0.0020		n/a			
"E"	0		0		0.0020		n/a			

We have only the conjugate-base left, which will undergo weak-base equilibrium. Note that the total volume is 4.0 mL because we would need to add 2.0 mL of 1.0 M NaOH to reach the equivalence point.

	CH₃COO⁻ (aq)	+	H ₂ O (I)	1	CH ₃ COOH (aq)	+	OH- (aq)
1	0.50 M		n/a		0 M		0 M
С	- x		n/a		+ X		+ X
"E"	0.50 – x		n/a		X		x

Set up the K_b expression, approximate x to be small, and solve for pOH and pH:

и _ [CH ₃ COOH][OH ⁻]	$pOH = -\log[OH^{-}] = -\log(1.6_8 \times 10^{-5}) = 4.77_3$
$\Lambda_{\rm b} = \frac{1}{[\rm CH_3\rm COO^-]}$	
X^2	pH + pOH = 14
$5.68_2 \times 10^{-10} \approx \frac{\pi}{0.50}$	$pH = 14 - 4.77_3$
$x = 1.6_8 \times 10^{-5} = [OH^{-1}]$	pH = 9.23

G) Calculate the pH after 3.0 mL of NaOH is added, point (4).

After the equivalence point, the pH will be dependent on excess NaOH:

	CH ₃ COOH (aq)	+	OH- (aq)	⇒	CH₃COO- (aq)	+	H ₂ O (I)
Ι	0.0020 mol		0.0030 mol		0 mol		n/a
С	- 0.0020		- 0.0020		+ 0.0020		n/a
"E"	0		0.0010		0.0010		n/a
Ne ca	n determine pOH d	irectly	and then pH:				

We can determine pOH directly and then pH:

$$pOH = -\log[OH^{-}] = -\log\left(\frac{0.0010 \text{ mol OH}^{-}}{0.0050 \text{ L}}\right) = 0.69_9$$

pH + pOH = 14
pH = 13.30

H) Go back to the diagram above. Circle the region in which you would find a buffer solution. What do you notice about the pH in this range? Does the pH-dependence make sense? In the region around $pH = pK_a$, we have a buffer. You can see the titration curves flattens out here, which tells us the pH is fairly constant regardless of the addition of NaOH.