1. A gaseous chemical equilibrium has an equilibrium constant with the following form.

$$K_{\rm p} = \frac{P_{\rm HI}^2}{P_{\rm H_2} P_{\rm I_2}}$$

A) Write a balanced chemical equation for this system/reaction.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

B) Write an expression for K_c and determine the relationship between K_p and K_c .

$$K_{\rm c} = \frac{[\rm HI]^2}{[\rm H_2][\rm I_2]}$$

Use ideal gas law: $\Delta n = 0$

$$[\mathbf{x}] = \frac{n_{\mathbf{x}}}{V} = \frac{P_{\mathbf{x}}}{RT} \to K_{c} = \frac{[\mathrm{HI}]^{2}}{[\mathrm{H}_{2}][\mathrm{I}_{2}]} = \frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H}_{2}}P_{\mathrm{I}_{2}}} \times \left(\frac{1}{RT}\right)^{\Delta n} = K_{\mathrm{p}}$$

C) A container holds $[H_2] = 2.95 \times 10^{-3} \text{ M}$, $[I_2] = 5.22 \times 10^{-4} \text{ M}$, and $[HI] = 1.95 \times 10^{-3} \text{ M}$ at 25 °C. If $K_c = 48.8$ at 25 °C, in which direction will the reaction proceed in the container?

Determine the reaction quotient (Q):

$$Q = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(1.95 \times 10^{-3})^2}{(2.95 \times 10^{-3})(5.22 \times 10^{-4})} = 2.47$$

Because Q < K, the reaction will shift toward the right or products side (HI).

2. In the laboratory you synthesize emerald-colored crystals of trihydrate potassium ferrioxalate $(K_3[Fe(C_2O_4)_3]\cdot 3H_2O)$ from aqueous solutions of FeCl₃ and $K_2C_2O_4$.

$$\text{FeCl}_{3}(aq) + 3K_{2}C_{2}O_{4}(aq) + 3H_{2}O(l) \rightarrow K_{3}[\text{Fe}(C_{2}O_{4})_{3}]\cdot 3H_{2}O(s) + \text{KCl}(aq)$$

Recrystallization from a saturated aqueous solution of your products, contaminated with byproducts and starting materials, served to purify your desired product.

A) Write a (solubility) equilibrium constant for dissolution of the crystals:

$$K_3[Fe(C_2O_4)_3] \cdot 3H_2O(s) \rightleftharpoons 3K^+(aq) + [Fe(C_2O_4)_3]^{3-}(aq) + 3H_2O(l)$$

 $K_{\rm sp} = [K^+]^3 [\{Fe(C_2O_4)_3\}^{3-}]$

B) If cooling the saturated solution results in crystal formation, is the dissolution of the $K_3[Fe(C_2O_4)_3]\cdot 3H_2O$ and endothermic or exothermic process?

If cooling shifts the equilibrium to the left, then heat must be a "reactant." Therefore, this reaction is <u>endothermic</u>: $\Delta H > 0$.

3. Consider the reaction between phosphorus(III) chloride and chlorine gas to produce phosphorus(V) chloride.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$
 $K_p = 24.2$

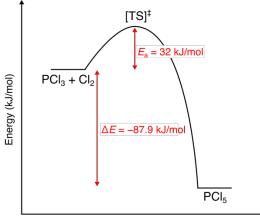
A) A 1.00 L container at constant temperature contains $P_{PCl_3} = 1.5$ atm, $P_{Cl_2} = 0.72$ atm, and $P_{PCl_5} = 0$ atm initially. Calculate the partial pressures at equilibrium. Because no PCl₅ is present initially (Q < K_p), equilibrium shifts to the right.

Set up an ICE chart (units of atm):

	PCl ₃ (g)	+	Cl ₂ (g)	⇒	PCl₅ (g)
1	1.5		0.72		0
С	- x		- x		+ X
E	1.5 – x		0.72 – x		x

Now set up the equilibrium expression and solve for x:

$$K_{\rm p} = \frac{P_{\rm PCl_5}}{P_{\rm PCl_3} P_{\rm Cl_2}}_{\rm X}$$


$$24.2 = \frac{x}{(1.5 - x)(0.72 - x)}$$

$$0 = 24.2x^2 - 54.724x + 26.136$$

$$x = 1.5_8 \text{ or } x = 0.68_5$$

Discard the x = 1.5₈ solution, so the equilibrium partial pressures are: $P_{PCl_5} = 0.69 \text{ atm}$ $P_{PCl_3} = 0.8 \text{ atm}$ $P_{Cl_2} = 0.03 \text{ atm}$

- B) Describe some ways in which we can increase the yield of PCl_5 (g).
 - Add either of the reactants \rightarrow shifts right
 - Remove products \rightarrow shifts right
 - Increase the pressure \rightarrow shifts right
 - Decrease the volume \rightarrow shifts right
 - Decrease the temperature \rightarrow see part C
- C) The energy diagram for the reaction is shown below. Determine how the equilibrium number of moles of PCl₅ would change if system were heated.

Reaction Coordinate

The reaction is <u>exothermic</u> ($\Delta H < 0$), so we can treat heat as a "product." Therefore, increasing the temperature would shift the reaction to the <u>left</u> and the number of moles of PCl₅ would <u>decrease</u>.