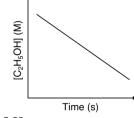
- 1. Experimental data for the one-step reaction $A \rightarrow B + C$ have been plotted in three different ways:
 - i. $\frac{1}{|A|}$ vs. time, which gives a straight line with a positive slope
 - ii. [A] vs. time, which gives a curved line
 - iii. ln[A] vs. time, which gives a curved line

Based on these plots, write the rate law for this reaction and determine the units of *k*.

2. The decomposition of ethanol (C₂H₅OH) on an alumina (Al₂O₃) surface was studied at 400 K.

$$C_2H_5OH(g) \rightarrow C_2H_4(g) + H_2O(g)$$

You plot the data and obtain a straight-line relationship (shown to the right) with a slope of -4.00×10^{-5} M/s.


A) What is the half-life if the initial concentration of C_2H_5OH is 1.25×10^{-2} M?

B) Determine the time required for 1.25×10^{-2} M C₂H₅OH to completely decompose?

3. The activation energy (E_a) for the following reaction is 32 kJ/mol and ΔE is -17 kJ/mol.

$$NO_{2}\left(g\right) + CO\left(g\right) \rightarrow NO\left(g\right) + CO_{2}\left(g\right)$$

Assuming, this is a single-step reaction, draw and label an energy diagram for this reaction and calculate the activation energy for the reverse reaction (E_a ').

4. Recall this reaction from last week's discussion:

$$2 \operatorname{NO}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{NO}_{2}(g)$$

A) Re-determine the rate law for the reaction using the new initial rates data.

Experiment	[NO] _o (M)	$[O_2]_0$ (M)	Initial Rate (M/s)
1	0.10	0.20	4.1×10^{2}
2	0.20	0.10	$8.2 imes 10^2$
3	0.10	0.30	$6.15 imes 10^2$

B) Which of the following are valid mechanisms for the reaction above?

Mechanism 1:	step 1) step 2)	$\begin{array}{l} \operatorname{NO}\left(g\right)+\operatorname{O}_{2}\left(g\right)\to\operatorname{NO}_{2}\left(g\right)+\operatorname{O}\left(g\right)\\ \operatorname{NO}\left(g\right)+\operatorname{O}\left(g\right)\to\operatorname{NO}_{2}\left(g\right) \end{array}$	(slow) (fast)
Mechanism 2:	step 1) step 2)	$\begin{array}{l} 2 \ \mathrm{NO} \ (\mathrm{g}) \rightarrow \mathrm{N_2O_2} \ (\mathrm{g}) \\ \mathrm{N_2O_2} \ (\mathrm{g}) + \mathrm{O_2} \ (\mathrm{g}) \rightarrow 2 \ \mathrm{NO_2} \ (\mathrm{g}) \end{array}$	(fast) (slow)
Mechanism 3:	step 1) step 2)	$\begin{array}{l} 2 \ \mathrm{NO} \ (\mathrm{g}) \rightarrow \mathrm{N}_2 \ (\mathrm{g}) + \mathrm{O}_2 \ (\mathrm{g}) \\ \mathrm{N}_2 \ (\mathrm{g}) + 2 \ \mathrm{O}_2 \ (\mathrm{g}) \rightarrow 2 \ \mathrm{NO}_2 \ (\mathrm{g}) \end{array}$	(fast) (slow)
Mechanism 4:	step 1) step 2)	$\begin{array}{l} \text{NO}(g) + \text{O}_2(g) \rightarrow \text{NO}_3(g) \\ \text{NO}_3(g) + \text{NO}(g) \rightarrow 2 \text{ NO}_2(g) \end{array}$	(fast) (slow)
Mechanism 5:	step 1) step 2)	$\begin{array}{l} \mathrm{NO}\left(\mathrm{g}\right) + \mathrm{O}_{2}\left(\mathrm{g}\right) \rightleftharpoons \mathrm{NO}_{3}\left(\mathrm{g}\right) \\ \mathrm{NO}_{3}\left(\mathrm{g}\right) + \mathrm{NO}\left(\mathrm{g}\right) \rightarrow 2 \ \mathrm{NO}_{2}\left(\mathrm{g}\right) \end{array}$	(fast) (slow)
Mechanism 6:	step 1) step 2) step 3)	$\begin{array}{l} 2 \text{ NO } (g) \rightarrow N_2 O_2 \left(g\right) \\ N_2 O_2 \left(g\right) \rightarrow N O_2 \left(g\right) + N \left(g\right) \\ N \left(g\right) + O_2 \left(g\right) \rightarrow N O_2 \left(g\right) \end{array}$	(fast) (slow) (fast)

- 5. The following reaction is studied at 37.0 °C H₂NCONH₂ + 3 H₂O \rightarrow 2 NH₄⁺ + OH⁻ + HCO₃⁻
 - A) You find the activation energy for the <u>uncatalyzed reaction</u> to be 138 kJ/mol. Calculate the rate constant, k_{uncat} , for the uncatalyzed reaction at 37.0 °C assuming the frequency factor is equal to A = 8.66 × 10¹² s⁻¹.

B) Adding the catalyst, urease, you find the activation energy for the <u>catalyzed reaction</u> to be 38.0 kJ/mol. Calculate the rate constant, k_{cat} , for the catalyzed reaction at 37.0 °C assuming the frequency factor is equal to A = $8.66 \times 10^{12} \text{ s}^{-1}$.

C) Calculate the temperature, theoretically, you would need to heat the <u>uncatalyzed reaction</u> in order for the rate of the uncatalyzed reaction to be equal to the rate of the <u>catalyzed</u> reaction at 37.0 °C.

Assume the overall rate order, concentrations, and frequency factor (A) are constant between the catalyzed and uncatalyzed reactions.