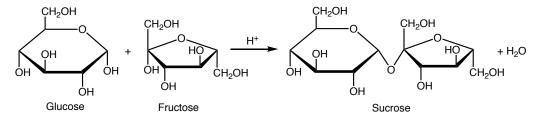
Kinetics

1. Complete the reaction by providing the missing products.

2. Consider the kinetic data, collected at 25 °C, for the reaction in problem 1.

Experiment	$[CH_3Cl]_0$ (M)	[OH-] ₀ (M)	Initial Rate (M/s)
1	0.0010	1.0	4.9×10^{-7}
2	0.0020	1.0	9.8×10^{-7}
3	0.0010	2.0	$9.8 imes 10^{-7}$
4	0.0020	2.0	$2.0 imes 10^{-6}$

A) Determine the rate law for this reaction.


B) Determine the value and units of the rate constant (*k*).

C) Calculate the activation energy (E_a) for this reaction if $A = 5.18 \times 10^{-2} \text{ s}^{-1}$.

$$k = Ae^{\frac{-E_a}{RT}}$$

Chemical Equilibrium

3. D-glucose and D-fructose can react via condensation to form the dipeptide sucrose.

If the initial concentrations of [glucose] = [fructose] = 0.150 M and the K_c = 7.35 × 10⁻⁶ for this

reaction at 27 °C, calculate the concentrations of glucose, fructose, and sucrose at equilibrium.

Acid-Base Equilibria

- 4. Glyoxylic acid (HOCCOOH) has a p K_a = 3.18 at 25 °C.
 - A) Write/Draw a balanced chemical equation for the dissociation of glyoxylic acid (drawn below).

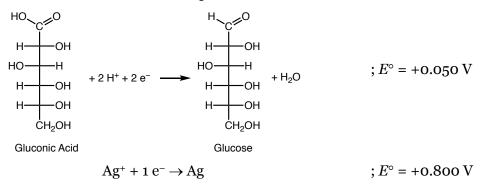
- B) Draw a resonance structure for the conjugate-base, the glyoxylate anion.
- C) If 2.0 mL of 1.0 M sodium hydroxide are added to 8.0 mL of a 1.4 M glyoxylic acid solution, what is the pH of the resulting solution?

Thermodynamics

5. Complete the reaction by providing the missing products.

$$H_2C=CH_2 + Br_2 \longrightarrow$$

6. Consider the following thermodynamic data collected at 25 °C.


	C_2H_4	Br_2	$C_2H_4Br_2$
$\Delta H_{\rm f}^{\circ} \left(\frac{\rm kJ}{\rm mol}\right)$	226.7	30.9	-1240.3
$\Delta S^{\circ} \left(\frac{J}{\mathrm{mol} \cdot \mathrm{K}} \right)$	200.8	245.5	223.3

A) Calculate the Gibbs free energy change for this reaction.

- B) Is this reaction driven by enthalpy or entropy?
- C) Calculate the temperature at which this reaction will be nonspontaneous.

Electrochemistry

7. Glucose is a reducing sugar that can be oxidized by the Tollens' reagent. Consider the two reduction processes and their standard reduction potentials (E°).

- A) Which is the reducing agent and which is the oxidizing agent?
- B) Write the net ionic equation for a Galvanic/voltaic cell based on these reactions.
- C) Determine the value of the E°_{cell} .
- D) Determine the value of the initial potential if an electrochemical cell is made with [glucose] = [gluconic acid] = 0.200 M glucose and 0.400 M silver nitrate solutions at 25 °C.