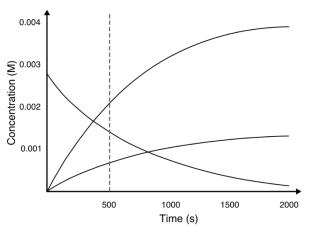
Here is your cheat sheet for kinetics. We will fill out most of this table today but will finish the rest next week.

Consider the general chemical equation:

 $a A \rightarrow b B + c C$ Rate = $k[A]^n$


	Zero-Order (n = 0)	First-Order (n = 1)	Second-Order (n = 2)
Rate Law	Rate =	Rate =	Rate =
Units of k			
Integrated Rate Law			
Half-Life	$t_{1/2} =$	$t_{1/2} =$	$t_{1/2} =$
"Half-life with time."	Decreases Stays the Increases same	Decreases Stays the Increases	Decreases Stays the Increases same
Plots	Bate (mol/L.) = slope =	[A] (mol/L.)	Bate (mol/L:)
	Time (s)	Time (s)	Time (s)

1. Consider the degradation of ammonia gas into nitrogen gas and hydrogen gas.

 $2 \text{ NH}_{3}(g) \rightarrow N_{2}(g) + 3 \text{ H}_{2}(g)$

A) For the concentration vs. time plot to the right, label each curve with the appropriate chemical species.

Discuss how you chose each curve.

- B) At t = 500 s, you determine the slope of a line tangent to the NH₃-curve to be -1.94×10^{-6} M/s. What is the rate of the reaction at this instant?
- C) If you were to compare the slopes of the tangent lines for the N₂- and H₂-curves at t = 500 s, how do you think they compare quantitatively to the slope in part B for NH₃? Why?
- 2. The overall stoichiometry in parts A and B below are the same, but the rate laws differ.
 - A) Determine the rate law for the following reaction using the initial rates data.

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$$

Experiment	$[NO]_{o}(M)$	$[O_2]_0(M)$	Initial Rate (M/s)
1	0.100	0.100	1.24
2	0.100	0.050	0.62
3	0.050	0.100	0.31

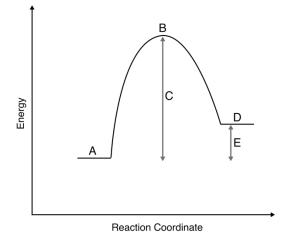
B) Determine the rate law for the following reaction using the initial rates data.

2 NO (g) + C]	$l_{2}(g) \rightarrow$	2 NOCl	(g)
--------	---------	------------------------	--------	-----

Experiment	[NO] ₀ (M)	$[Cl_2]_0(M)$	Initial Rate (M/s)
1	0.200	0.100	0.63
2	0.200	0.300	5.70
3	0.800	0.100	2.58

3. The following initial rate data was collected for the following chemical reaction:

Experiment	$[MnO_{4}^{-}]_{0}(M)$	$[H_2C_2O_4]_0(M)$	[H ⁺] ₀ (M)	Initial Rate (M/s)
1	$1.0 imes10^{-3}$	$1.0 imes10^{-3}$	1.0	2.0×10^{-4}
2	$2.0 imes 10^{-3}$	$1.0 imes10^{-3}$	1.0	$8.0\times\mathbf{10^{-4}}$
3	$2.0 imes 10^{-3}$	$2.0 imes 10^{-3}$	1.0	$1.6 imes 10^{-3}$
4	$2.0 imes 10^{-3}$	$2.0 imes 10^{-3}$	2.0	$3.2 imes 10^{-3}$


 $2 \text{ MnO}_4^{-} (aq) + 5 \text{ H}_2\text{C}_2\text{O}_4 (aq) + 6 \text{ H}^+ (aq) \rightarrow 2 \text{ Mn}^{2+} (aq) + 10 \text{ CO}_2 (g) + 8 \text{ H}_2\text{O} (l)$

A) Determine the rate law for this reaction.

B) Determine the rate constant, including its units.

C) Predict the initial reaction rate if $[MnO_4^-]_0 = [H_2C_2O_4]_0 = [H^+]_0 = 1.5 \times 10^{-3} \text{ M}$?

4. Consider the following energy diagram.

- A) Which letter corresponds to the activation energy for the reaction?
- B) Which letter corresponds to the position of an "activated complex" or "transition state?"
- C) Is this reaction exothermic or endothermic? Which letter helps you decide this?
- D) In the energy diagram above, draw a new label (letter F) which corresponds to the activation energy for the reverse reaction.
- E) Is the activation energy in the reverse direction greater than or less than the activation energy for the forward reaction?