1. Consider the following half reactions and standard reduction potentials.

$$\begin{array}{ll} \text{Au}_{3^{+}}(aq) + 3 \, \mathrm{e}^{-} \to \text{Au} \, (s) & E^{\circ} = +1.400 \, \mathrm{V} \\ \text{Cl}_{2} \, (g) + 2 \, \mathrm{e}^{-} \to 2 \, \mathrm{Cl}^{-} \, (aq) & E^{\circ} = +1.358 \, \mathrm{V} \\ \text{Cu}_{2^{+}} \, (aq) + 2 \, \mathrm{e}^{-} \to \mathrm{Cu} \, (s) & E^{\circ} = +0.342 \mathrm{V} \\ 2 \, \mathrm{H}^{+} \, (aq) + 2 \, \mathrm{e}^{-} \to \mathrm{H}_{2} \, (g) & E^{\circ} = 0 \, \mathrm{V} \\ \text{Cd}_{2^{+}} \, (aq) + 2 \, \mathrm{e}^{-} \to \mathrm{Cd} \, (s) & E^{\circ} = -0.403 \, \mathrm{V} \\ \text{Zn}_{2^{+}} \, (aq) + 2 \, \mathrm{e}^{-} \to \mathrm{Zn} \, (s) & E^{\circ} = -0.762 \, \mathrm{V} \end{array}$$

- A) Circle \bigcirc the strongest oxidizing agent and box \bigcirc the strongest reducing agent.
- B) Write the balanced chemical equation and cell diagram for the Galvanic cell with the <u>largest</u> standard cell potential ($E_{\text{cell}}^{\text{o}}$).

The largest standard cell potentials would arise from: $2 \text{ Au}^3 + (aq) + 3 \text{ Zn}(s) \rightarrow 2 \text{ Au}(s) + 3 \text{ Zn}^{2+}(aq)$ $E_{\text{cell}}^{\text{o}} = E^{\circ}(\text{Au}^{3+}/\text{Au}) - E^{\circ}(\text{Zn}^{2+}/\text{Zn}) = 1.400 \text{ V} - (-0.762 \text{ V}) = +2.162 \text{ V}$

Zn (s) | Zn²⁺ (1.00 M) | Au³⁺ (1.00 M) | Au (s) The cell (line) diagram would be:

2. How long will it take to plate 0.0625 g of solid copper from an aqueous solution of copper(II) sulfate with a current of 0.200 A? Note: 1 A = 1 C/s and F = 96,500 C/mol e^-

$$0.0625 \text{ g Cu} \times \frac{1 \text{ mol Cu}}{63.55 \text{ g Cu}} \times \frac{2 \text{ mol } e^{-}}{1 \text{ mol Cu}} \times \frac{96500 \text{ C}}{1 \text{ mol } e^{-}} \times \frac{1 \text{ s}}{0.200 \text{ C}} = 949 \text{ s}$$

$$-or-$$

$$0.200 \frac{\text{C}}{\text{s}} \times \frac{1 \text{ mol } e^{-}}{96500 \text{ C}} \times \frac{1 \text{ mol Cu}}{2 \text{ mol } e^{-}} \times \frac{63.55 \text{ g Cu}}{1 \text{ mol Cu}} \times \frac{1}{0.0625 \text{ g Cu}} = 0.00105_{4} \text{ s}^{-1} \rightarrow 949 \text{ s}$$

3. A Galvanic cell is constructed using two Au electrodes and two Au³⁺ solutions: one is 0.123 M and the other is 0.449 M. Fill in the concentrations in the cell diagram below for this cell?

Au
$$(s)$$
 | Au³⁺ (0.123 M) | Au³⁺ (0.449 M) | Au (s)

4. You construct the following Galvanic/voltaic cell at 298.15 K.

Pt (s) | Cr²⁺ (0.30 M), Cr³⁺ (2.00 M) || Co²⁺ (0.20 M) | Co (s)
$$E_{\text{cell}}^{0}$$
 = +0.220 V What will the potential of the cell be after 0.10 M of Cr²⁺ is consumed?

Assume that volume and temperature do not change.

	2 Cr2+ (aq)	+	Co2+ (aq)	\rightarrow	2 Cr3+ (aq)	+	Co (s)
	0.30 M		0.20 M		2.00 M		n/a
С	- 0.10		$-\frac{1}{2} \times 0.10$		+ 0.10		n/a
F	0.20		0.15		2.10		n/a

Now use the Nernst equation to find the new cell potential:

$$\begin{split} E_{\text{cell}} &= E^{\circ}_{\text{cell}} - \frac{RT}{nF} \ln \left(\frac{[\text{Cr}^{3+}]^{2}}{[\text{Cr}^{2+}]^{2}[\text{Co}^{2+}]} \right) \\ &= 0.220 \,\text{V} - \frac{\left(8.314 \, \frac{\text{J}}{\text{mol} \cdot \text{K}} \right) (298.15 \, \text{K})}{(2 \, \text{mol} \, e^{-}) \left(96500 \, \frac{\text{C}}{\text{mol} \, e^{-}} \right)} \cdot \ln \left(\frac{[2.10]^{2}}{[0.20]^{2} \times [0.15]} \right) \\ E_{\text{cell}} &= 0.135 \, \text{V} \end{split}$$

5. You construct the following Galvanic cell at 298.15 K.

Fe (s) | Fe²⁺ (0.10 M) || Cd²⁺ (0.95 M) | Cd (s)
$$E_{\text{cell}}^0$$
 = +0.044 V

The initial mass of the Fe electrode is 100.0 g and the volumes of the solutions are 1.00 L each. What will the cell potential be when the mass of the Fe electrode is 62.0 g? {Fe = 55.85 g/mol}

Assume that temperature does not change.

The net ionic equation is: Fe (s) + Cd²+ (aq)
$$\rightarrow$$
 Fe²+ (aq) + Cd (s)
$$n_{\rm Fe} = (100.0 - 62.0)~{\rm g~Fe} \times \frac{1~{\rm mol~Fe}}{55.85~{\rm g~Fe}} = 0.680_4~{\rm mol~Fe~consumed}$$

$$n_{\rm Cd²+} = 0.95~{\rm mol} - \left(0.680_4~{\rm mol~Fe} \times \frac{1~{\rm mol~Cd²+}}{1~{\rm mol~Fe}}\right) = 0.26_{96}~{\rm mol~Cd²+}~{\rm leftover}$$

$$n_{\rm Fe²+} = 0.10~{\rm mol} + \left(0.680_4~{\rm mol~Fe} \times \frac{1~{\rm mol~Fe²+}}{1~{\rm mol~Fe}}\right) = 0.78_{04}~{\rm M~Fe²+}~{\rm total}$$

Now use the Nernst equation to find the new cell potential

$$E_{\text{cell}} = 0.044 \text{ V} - \frac{\left(8.314 \frac{\text{J}}{\text{mol \cdot K}}\right) (298.15 \text{ K})}{(2 \text{ mol } e^{-}) \left(96500 \frac{\text{C}}{\text{mol } e^{-}}\right)} \cdot \ln \left(\frac{0.78_{04} \text{ mol Fe}^{2+} / 1.00 \text{ L}}{0.26_{96} \text{ mol Cd}^{2+} / 1.00 \text{ L}}\right)$$

$$E_{\text{cell}} = 0.030 \text{ V}$$

6. You construct a voltaic cell using the two reactions given.

$$Sn^{2+} (aq) + 2 e^{-} \rightarrow Sn (s)$$
 $E^{\circ} = -0.143 \text{ V}$
 $Pb^{2+} (aq) + 2 e^{-} \rightarrow Pb (s)$ $E^{\circ} = -0.131 \text{ V}$

If the cell starts with $[Sn^{2+}] = 1.35 \text{ M}$ and $[Pb^{2+}] = 2.11 \text{ M}$ at 298.15 K, what will be the concentration of Pb^{2+} when the cell is "dead"?

A "dead" cell is one that has reached equilibrium: $\Delta G = 0$ and $E_{\rm cell} = 0$ V.

	Sn (s)	+	Pb ²⁺ (aq)	\rightarrow	Sn²+ (aq)	+	Pb (s)
I	n/a		2.11 M		1.35 M		n/a
С	n/a		- x		+ X		n/a
F	n/a		2.11 - x		1.35 + x		n/a

$$0 \text{ V} = 0.012 \text{ V} - \frac{\left(8.314 \frac{\text{J}}{\text{mol } \cdot \text{K}}\right) (281 \text{ K})}{(2 \text{ mol } e^{-}) \left(96500 \frac{\text{C}}{\text{mol } e^{-}}\right)} \cdot \ln \left(\frac{1.35 + \text{x}}{2.11 - \text{x}}\right)$$

$$x = 1.17_4 \text{ M}$$
Now solve for the concentration of Pb²⁺

$$[Pb^{2+}] = 2.11 - 1.17_4 = 0.94 \text{ M}$$

7. Consider a voltaic cell with the following cell diagram at 298.15 K.

A) What will happen to the cell potential if [Pb²⁺] is doubled?

Increases <u>Decreases</u> Stays the same

B) What will happen to the cell potential if [Cu⁺] is doubled?

<u>Increases</u> Decreases Stays the same

C) What will happen to the cell potential if we added enough water to double the volumes of both the anodic and cathodic solutions?

Increases <u>Decreases</u> Stays the same