Salts & Solubility

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

What is a salt?

A salt is an ionic compound: metal + nonmetal

Some salts are **soluble** in water (aqueous, aq = dissolves in water). Some salts are **insoluble** in water (precipitate, solid, s).

MEMORIZE THIS CHART:

You should be able to quickly identify the ions that comprise a salt!

- 1. KNO₃:
- 2. PbSO₄:
- 3. KOH:
- 4. MgSO₄:
- 5. FePO₄:
- 6. $Pb(NO_3)_2$:
- 7. $Pb(SO_4)_2$:
- 8. FeCl₂:
- 9. ZnS:
- $10.Cd(OH)_2$:
- 11. MgCO₃:
- 12. NH₄CI:
- 13. CaBr₂:
- 14. Hg₂I:
- 15. CuCH₃COO:

- 1. KNO₃: soluble
- 2. PbSO₄: insoluble
- 3. KOH: soluble
- 4. MgSO₄: soluble
- 5. FePO₄: insoluble
- 6. $Pb(NO_3)_2$: soluble
- 7. $Pb(SO_4)_2$: soluble
- 8. FeCl₂: soluble
- 9. ZnS: insoluble
- $10.Cd(OH)_2$: insoluble
- 11. MgCO₃: insoluble
- 12. NH₄CI: soluble
- 13. CaBr₂: soluble
- 14. Hg₂I: insoluble
- 15. CuCH₃COO: soluble

- 1. Nickel (II) Hydroxide:
- 2. Sodium Chloride:
- 3. Barium Nitrate:
- 4. Ammonium Bromide:
- 5. Magnesium Hydroxide:
- 6. Barium Sulfate:
- 7. Barium Hydroxide:
- 8. Lanthanum Nitrate:
- 9. Sodium Acetate:
- 10. Lead(II) Hydroxide:
- 11. Lead(IV) Sulfate:
- 12. Calcium Phosphate:
- 13. Iron(II) Sulfide:
- 14. Lithium Fluoride:
- 15. Aluminum Carbonate:

- 1. Nickel (II) Hydroxide: insoluble
- 2. Sodium Chloride : soluble
- 3. Barium Nitrate: soluble
- 4. Ammonium Bromide: soluble
- 5. Magnesium Hydroxide : *insoluble*
- 6. Barium Sulfate: insoluble
- 7. Barium Hydroxide : soluble
- 8. Lanthanum Nitrate: soluble
- 9. Sodium Acetate: soluble
- 10. Lead(II) Hydroxide: insoluble
- 11. Lead(IV) Sulfate: soluble
- 12. Calcium Phosphate : insoluble
- 13. Iron(II) Sulfide: insoluble
- 14. Lithium Fluoride: soluble
- 15. Aluminum Carbonate: insoluble

We can use the expression for molarity to determine the number of moles of CaCl₂:

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

Q: Is this the best microscopic picture of what actually goes on in solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

$$[CaCl2] = \frac{\# \text{ moles } CaCl2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol } CaCl2 \times \frac{2 \text{ mol } Cl^{-}}{1 \text{ mol } CaCl2} = 0.240 \text{ mol } Cl^{-}$$

Q: Is this the best microscopic picture of what actually goes on in solution?

What is the <u>concentration</u> of <u>chloride ions</u> in 60.0 mL of a 2.00 M calcium chloride solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

$$[CaCl2] = \frac{\text{# moles CaCl}_2}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_2 \times \frac{2 \text{ mol Cl}^-}{1 \text{ mol CaCl}_2} = 0.240 \text{ mol Cl}^-$$

$$x = 0.120 \text{ mol CaCl}_2$$

Q: Is this the best microscopic picture of what actually goes on in solution?

What is the <u>concentration</u> of <u>chloride ions</u> in 60.0 mL of a 2.00 M calcium chloride solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

$$[CaCl_{2}] = \frac{\text{# moles CaCl}_{2}}{\text{Volume (L)}}$$

$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$

$$x = 0.120 \text{ mol CaCl}_{2} \times \frac{2 \text{ mol Cl}^{-}}{1 \text{ mol CaCl}_{2}} = 0.240 \text{ mol Cl}^{-}$$

$$[Cl^{-}] = \frac{0.240 \text{ mol Cl}^{-}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 4.00 \text{ M Cl}^{-}$$

Q: Is this the best microscopic picture of what actually goes on in solution?

NaBr

Na₂SO₄

Na₃PO₄

NaBr

Na₂SO₄

Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

NaBr

Na₂SO₄

Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

NaBr

Na₂SO₄

Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

Now it's easier to understand that a solution of Na₃PO₄ would have the highest concentration of dissolved ions (4 ions).

0.25 M NaBr

0.25 M Na₂SO₄

0.25 M Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

0.25 M NaBr

0.25 M Na₂SO₄

0.25 M Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

Understand that the concentration of *ions* would be:

1 NaBr : 2 ions

Br-

 $1 \text{ Na}_2\text{SO}_4 : 3 \text{ ions}$

1 Na₃PO₄ : 4 ions

0.25 M NaBr

0.25 M Na₂SO₄

0.25 M Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na+ + 1Br-1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

Understand that the concentration of *ions* would be:

1 NaBr : 2 ions

 $[ions] = 2 \times 0.25 \text{ M} = 0.50 \text{ M}$ $[ions] = 3 \times 0.25 \text{ M} = 0.75 \text{ M}$

 $1 \text{ Na}_2\text{SO}_4 : 3 \text{ ions}$

1 Na₃PO₄ : 4 ions $[ions] = 4 \times 0.25 M = 1.00 M$

0.25 M NaBr

0.25 M Na₂SO₄

0.25 M Na₃PO₄

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

1 molecule NaBr = 1Na+ + 1Br-1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2 \text{ mol } Na^+ + 1 \text{ mol } SO_4^{2-}$

Understand that the concentration of *ions* would be:

1 NaBr : 2 ions

 $[ions] = 2 \times 0.25 \text{ M} = 0.50 \text{ M}$ $[ions] = 3 \times 0.25 \text{ M} = 0.75 \text{ M}$

 $1 \text{ Na}_2\text{SO}_4$: 3 ions

