Electrochemistry Quiz	Name:	Key		
May I post your colution?		[] Vog hut redect my name		

Consider a Galvanic/voltaic cell based on the following half reactions under standard conditions.

$$Fe^{2+}$$
 (aq) + 2 $e^{-} \rightarrow Fe$ (s) $E^{\circ} = -0.440 V$

$$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$$
 $E^{\circ} = -0.403 V$

What will be the cell potential (E_{cell}) when the cathode solution *changes* by 0.827 M? You may leave your answer in the form of an expression.

To construct a Galvanic/voltaic cell, the overall reaction must be spontaneous: $\Delta G^{\circ} < 1$ and $E^{\circ}_{cell} > 0$ V.

This means that the following reactions must take place:

• Anode oxidation $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$ • Cathode reduction $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$

The overall (net ionic) equation for the cell is: Fe (s) + Cd²⁺ (aq) \rightarrow Fe²⁺ (aq) + Cd (s)

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$$

= -0.403 V - (-0.440 V)
$$E^{\circ}_{cell} = +0.037 V$$

Now we can set up an IC"E" chart to determine how much of each solution will be left after the cell has operated for some time. Note three things though:

- We are starting at standard conditions initially, so $[Fe^{2+}] = [Cd^{2+}] = 1.000$ M and T = 298.15 K.
- The change value is x = 0.827 M.
- The number of electrons is n = 2.

	Fe (s)	+	Cd ²⁺ (aq)	\rightarrow	Fe ²⁺ (aq)	+	Cd (s)
I	n/a		1.000 M		1.000 M		n/a
С	n/a		- 0.827		+ 0.827		n/a
"E"	n/a		0.173 M		1.827 M		n/a

Now use the Nernst equation to find the new cell potential at these concentrations:

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln\left(\frac{[\text{Fe}^{2+}]}{[\text{Cd}^{2+}]}\right)$$

= 0.037 V - $\frac{\left(8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) (298.15 \text{ K})}{(2 \text{ mol } e^{-}) \left(96500 \frac{\text{C}}{\text{mol } e^{-}}\right)} \cdot \ln\left(\frac{1.827}{0.173}\right)$
 $E_{\text{cell}} = 0.007 \text{ V}$