Electrochemistry Quiz		Name: _	
May I post your solution?	[] Yes	[] No	[] Yes, but redact my name
Consider a Galvanic/voltaic ce	ll based on the following	half reactions	s under standard conditions.
	Fe^{2+} (aq) + 2 $e^- \rightarrow Fe$	(s) E° =	0.440 V
	Cd^{2+} (aq) + 2 $e^- \rightarrow Cd^{-1}$	l (s) E° =	= -0.403 V
What will be the cell potential You may leave your answer in	(E_{cell}) when the cathode s the form of an expression	solution <i>chan</i> 1.	ges by 0.827 M?
Electrochemistry Quiz		Name: _	
May I post your solution?			[] Yes, but redact my name
Consider a Galvanic/voltaic ce	e e		
	Fe^{2+} (aq) + 2 $e^- \rightarrow Fe$		
	Cd^{2+} (aq) + 2 $e^- \rightarrow Cd$	$E^{\circ} =$: -0.403 V

What will be the cell potential (E_{cell}) when the cathode solution *changes* by 0.827 M? You may leave your answer in the form of an expression.