Equilibrium Quiz
May I post your solution?
Consider the reaction:
\qquad
[] Yes, but redact my name

At $35^{\circ} \mathrm{C}$, the equilibrium constant is $K_{\mathrm{c}}=1.6 \times 10^{-5}$. In an experiment, you place 1.0 mol of $\mathrm{NO}(\mathrm{g})$ and 1.0 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ into a 2.0 L container and allow the system to reach equilibrium.

Set up an ICE chart and an expression that would allow you to calculate the equilibrium concentration of NO (g).

$$
\begin{aligned}
& K_{c}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{[\mathrm{NOCl}]^{2}}=1.6 \times 10^{-5} \\
& \begin{array}{ccc}
\text { NO } & \mathrm{Cl}_{2} & \mathrm{NOCl} \\
1 & 0.5 \mathrm{M} & 0.5 \mathrm{M}
\end{array} \mathrm{O}
\end{aligned}
$$

$$
1,6 \times 10^{-5}=\frac{(0,5-x)^{2}(0,5-0,5 x)}{x^{2}}
$$

Solve for x, andglug x inti the
ICE table to find the equilibrium concentrations of each component of the reaction.

Interesting choice to
work in fractions, but

Equilibrium Quiz

May I post your solution?
Consider the reaction:

Name:

[] No
[] Yes, but redact my name

At $35^{\circ} \mathrm{C}$, the equilibrium constant is $K_{\mathrm{c}}=1.6 \times 10^{-5}$. In an experiment, you place 1.0 mol of $\mathrm{NO}(\mathrm{g})$ and 1.0 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ into a 2.0 L container and allow the system to reach equilibrium.

Set up an ICE chart and an expression that would allow you to calculate the equilibrium concentration of NO (g).

$$
\frac{1.0 \mathrm{~mol} \mathrm{NO}}{2.0 \mathrm{~L}}=0.50 \mathrm{M} \mathrm{NO}
$$

$$
\frac{1.0 \mathrm{~mol} \mathrm{Cl}}{2.0 \mathrm{~L}}=0.50 \mathrm{M} \mathrm{Cl} 2
$$

$R:$	$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons$	$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl} 2(\mathrm{~g})$
$I:$	0	0.50 M

May I post your solution?
[] Yes
$[1]$ No
[X] Yes, but redact my name
Consider the reaction: $\quad \mathbf{2 N O C l}(\mathrm{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{C l}_{\mathbf{2}}(\mathrm{g})$
At $35^{\circ} \mathrm{C}$, the equilibrium constant is $K_{\mathrm{c}}=1.6 \times 10^{-5}$. In an experiment, you place 1.0 mol of $\mathrm{NO}(\mathrm{g})$ and 1.0 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ into a 2.0 L container and allow the system to reach equilibrium.

Set up an ICE chart and an expression that would allow you to calculate the equilibrium concentration of $\mathrm{NO}(\mathrm{g})$.

$$
\begin{aligned}
& \begin{array}{ccccc}
M & 2 \mathrm{NO} & +\mathrm{Cl}_{2} & \rightarrow & 2 \mathrm{NOCl} \\
1 & 0.5 & 0.5 & 0 \\
C & -2 x & -x & & +2 x \\
E & 0.5-2 x & 0.5-x & & 2 x \\
& \downarrow & & &
\end{array} \\
& {[0.5-2 x]} \\
& 4 \\
& \frac{1}{k_{c}}= \\
& {[\mathrm{NO}]=\frac{1 \mathrm{~mol}}{2.0 \mathrm{~L}}=\begin{array}{r}
0.5 \\
\mathrm{M}
\end{array}} \\
& {\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.} \\
& {\left[\mathrm{Cl}_{2}\right]=\frac{1.0 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.5 \mathrm{M}} \\
& {[0.5-2 x] \leqslant} \\
& \frac{1}{1.6 \times 10^{-5}}=\frac{[2 x]^{2}}{[0.5-2 x]^{2}[0.5-x]} \\
& \text { solve for } x \text {, } \\
& \text { then plug in }
\end{aligned}
$$

Equilibrium Quiz

$\int x$

May I post your solution?
[] Yes [] No
[V /Yes, but redact my name
Consider the reaction:
$\mathbf{2 N O C l}(\mathrm{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{C l}_{\mathbf{2}}(\mathrm{g})$
At $35^{\circ} \mathrm{C}$, the equilibrium constant is $K_{\mathrm{c}}=1.6 \times 10^{-5}$. In an experiment, you place 1.0 mol of $\mathrm{NO}(\mathrm{g})$ and 1.0 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ into a 2.0 L container and allow the system to reach equilibrium.

Set up an ICE chart and an expression that would allow you to calculate the equilibrium concentration of NO (g).
$K_{c}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]^{2}} \quad[]=\frac{\mathrm{mol}}{2} \quad \frac{1}{2} \quad, \frac{1}{2}$

$$
\begin{array}{cc}
2 \mathrm{NOCl} & \rightarrow 2 \mathrm{NO} \\
0 & 0.5 \\
+X & -2 x \\
+x & 0.5-2 x
\end{array}
$$

