4
 PRACTICE PROBLEMS

Dr. Mioy T. Huynh \| Yale University
Chemistry 165b \| SpRINg 2019
WWW.MIOY.ORG/CHEM165

PRACTICE PROBLEM 1.1

Consider the decomposition of nitrous oxide:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Given the following initial rates data collected at 321 K , determine the rate

Experiment	$\left[\mathrm{N}_{2} \mathrm{O}\right]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{min})$
1	0.387	0.00190
2	1.161	0.0171
3	1.935	0.0476

PRACTICE PROBLEM 1.2

Consider the decomposition of nitrous oxide:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Determine the value and units for the rate constant k.

Experiment	$\left[\mathrm{N}_{2} \mathrm{O}\right]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{min})$
1	0.387	0.00190
2	1.161	0.0171
3	1.935	0.0476

PRACTICE PROBLEM 1.3

Consider the decomposition of nitrous oxide:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

If we start with $\left[\mathrm{N}_{2} \mathrm{O}\right]=1.00 \mathrm{M}$, how long would it take for this reaction to go to 15% completion?

PRACTICE PROBLEM 1.4

Consider the decomposition of nitrous oxide:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Which of the following proposed mechanisms is not valid? Justify your choice briefly.

- answer -

I	$\mathrm{N}_{2} \mathrm{O} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}$	(fast)
	$\mathrm{N}_{2} \mathrm{O}+\mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$	(slow)
II	$2 \mathrm{~N}_{2} \mathrm{O} \rightleftharpoons \mathrm{N}_{4} \mathrm{O}_{2}$	(fast)
	$\mathrm{N}_{4} \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$	(slow)
III	$\mathrm{N}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}+\mathrm{O}$	(slow)
	$\mathrm{O}+\mathrm{O} \rightarrow \mathrm{O}_{2}$	(fast)

Hypochlorous acid (HClO) is a weak acid with a $K_{\mathrm{a}}=2.98 \times 10^{-8}$ at 298 K .
What is the pH of a $100 . \mathrm{mL}$ solution of 2.01 M HClO ?

PRACTICE PROBLEM 2.2

Hypochlorous acid (HClO) is a weak acid with a $K_{\mathrm{a}}=2.98 \times 10^{-8}$ at 298 K .
To $100 . \mathrm{mL}$ of 2.01 M HClO we add 0.080 moles of NaOH . What is the pH of the resulting solution?
You may assume no change in volume or temperature.

- answer -

PRACTICE PROBLEM $\mathbf{2 . 2}$

Hypochlorous acid (HClO) is a weak acid with a $K_{\mathrm{a}}=2.98 \times 10^{-8}$ at 298 K .
How many grams of solid NaClO would need to be added to 100 mL of 2.01 M HClO to produce a solution with a $\mathrm{pH}=7.60$?
You may assume no change in volume or temperature.

- answer -

PRACTICE PROBLEM 3.1

Consider the equilibrium reaction: $\quad \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq}) \quad K_{\mathrm{c}}=1.7 \times 10^{7}$ (at 298 K)
If the initial solution contains only $0.10 \mathrm{M}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$, what is the equilibrium concentration of NH_{3} in solution?

- answer -

PRACTICE PROBLEM 3.2

To a 0.10 M KCl solution, AgNO_{3} is added gradually until a precipitate beings to form. If the concentration of [$\left.\mathrm{Ag}^{+}\right]$at the time of precipitate formation is $1.6 \times 10^{-9} \mathrm{M}$, what is the value of K_{sp} for AgCl ?

PRACTICE PROBLEM 3.3

Do you expect AgCl to be more or less soluble in a solution of pure NH_{3} than in a solution of pure water? Justify your answer. Refer to Practice Problem 3.1.

PRACTICE PROBLEM 4.1

Consider the gaseous equilibrium: $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

At 298 K , the value of K_{c} for this reaction is 0.060 . Write an expression for K_{p} using K_{c} at 298 K .

- answer -

PRACTICE PROBLEM 4.2

Which of the following aqueous salt solutions are acidic? Assume all are 1.0 M.
(a) NaNO_{2}
(b) $\mathrm{KCH}_{3} \mathrm{COO}$
(c) $\mathrm{NH}_{4} \mathrm{Br}$
(d) BaCl_{2}

PRACTICE PROBLEM 4.3

The following concentration-time data are plotted below for the decomposition of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ at 298 K .

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

What is the order of the reaction with respect to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$?

Time (s)	$\left[\mathrm{C}_{4} \mathrm{H}_{6}\right](\mathrm{M})$
0	1.00
120.	0.91
300.	0.78
600.	0.59
1200.	0.37
1800.	0.22

PRACTICE PROBLEM 4.4

Which of the following changes would increase the concentration of $\left[\mathrm{Br}_{2}\right]$ for the following chemical reaction?

$$
2 \mathrm{Br}(\mathrm{~g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g}) \quad ; \Delta H=-244 \mathrm{~kJ}
$$

(a) Increasing the temperature.
(b) Increasing the total pressure of the system.
(c) Increasing the volume of the container.

