Partial Pressures

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

GASES

1. Gases take up the volume of the container - has no definite shape or volume
2. Gases mix well - diffusion
3. Gases exert pressure

THINGS WE CARE ABOUT FOR GASES

- Pressure (P)
- Volume (V)
- Temperature (T)
- Moles (n)

We'll come back to these in a moment.

ATMOSPHERIC PRESSURE

Remember that we are always under the pressure of the atmosphere, which is defined as 1 atm .

Any system that is allowed to equilibrate with the pressure of the atmosphere will try to obtain atmospheric pressure.

This is how balloons work because they can change their volume to maintain atmospheric pressure inside.

MIXTURES OF GASES

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

MIXTURES OF GASES

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

This means that you can simply add the partial pressure of each gas together to find the total pressure:

$$
\begin{aligned}
& P_{\text {total }}=P_{A}+P_{\mathrm{B}}+P_{\mathrm{C}} \ldots \\
& n_{\text {total }}=n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}} \ldots
\end{aligned}
$$

MIXTURES OF GASES

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

This means that you can simply add the partial pressure of each gas together to find the total pressure:

$$
\begin{aligned}
& P_{\text {total }}=P_{A}+P_{\mathrm{B}}+P_{\mathrm{C}} \ldots \\
& n_{\text {total }}=n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}} \ldots
\end{aligned}
$$

How to calculate partial pressure of gas A in a mixture:

MIXTURES OF GASES

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

This means that you can simply add the partial pressure of each gas together to find the total pressure:

$$
\begin{aligned}
& P_{\text {total }}=P_{A}+P_{\mathrm{B}}+P_{\mathrm{C}} \ldots \\
& n_{\text {total }}=n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}} \ldots
\end{aligned}
$$

How to calculate partial pressure of gas A in a mixture:

- Determine moles of the gas
- Determine the mole ratio

$$
\begin{aligned}
& n_{\mathrm{A}} \\
& X_{\mathrm{A}}=n_{\mathrm{A}} / n_{\text {total }} \\
& P_{\mathrm{A}}=X_{\mathrm{A}} P_{\text {total }} \\
& P_{\text {total }}=n_{\text {total }} R T / V
\end{aligned}
$$

- Multiply mole ratio by total pressure
- Ptotal can be found by using the ideal gas law

MIXTURES OF GASES

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

This means that you can simply add the partial pressure of each gas together to find the total pressure:

$$
\begin{aligned}
& P_{\text {total }}=P_{A}+P_{B}+P_{\mathrm{C}} \ldots \\
& n_{\text {total }}=n_{A}+n_{B}+n_{C} \ldots
\end{aligned}
$$

How to calculate partial pressure of gas A in a mixture:

- Determine moles of the gas
- Determine the mole ratio

```
\(n_{\text {A }}\)
```

- Multiply mole ratio by total pressure
- Ptotal can be found by using the ideal gas law

$$
X_{\mathrm{A}}=n_{\mathrm{A}} / n_{\text {total }}
$$

$P_{\mathrm{A}}=X_{\mathrm{A}} P_{\text {total }}$
$P_{\text {total }}=n_{\text {total }} R T / V$

- Or apply the ideal gas law on gas A only to find P_{A}

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank?

What is the total pressure in the tank?

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Solve for the partial pressures of each gas using the ideal gas law:

For N_{2} :

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Solve for the partial pressures of each gas using the ideal gas law:

For N_{2} :

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} R T}{V} \\
& =\frac{(186 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297 \cdot 15 \mathrm{~K})}{50.0 \mathrm{~L}}
\end{aligned}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Solve for the partial pressures of each gas using the ideal gas law:

For N_{2} :

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} R T}{V} \\
& =\frac{(186 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297 \cdot 15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{N}_{2}} & =90.7_{1} \mathrm{~atm}
\end{aligned}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Solve for the partial pressures of each gas using the ideal gas law:

For N_{2} :

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} R T}{V} \\
& =\frac{(186 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{N}_{2}} & =90.7_{1} \mathrm{~atm} \\
P_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}} R T}{V} \\
& =\frac{(145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{O}_{2}} & =70.7_{1} \mathrm{~atm} \quad
\end{aligned}
$$

For O_{2} :

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Solve for the partial pressures of each gas using the ideal gas law:

For N_{2} :

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} R T}{V} \\
& =\frac{(186 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297 \cdot 15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{N}_{2}} & =90.7_{1} \mathrm{~atm}
\end{aligned}
$$

For O_{2} :

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}} R T}{V} \\
& =\frac{(145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297 \cdot 15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{O}_{2}} & =70.7_{1} \mathrm{~atm}
\end{aligned}
$$

$$
\text { For total pressure: } P_{\text {total }}=P_{N_{2}}+P_{O_{2}}=90.7_{1} \mathrm{~atm}+70.7_{1} \mathrm{~atm}=161 \mathrm{~atm}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure ($P_{\text {total }}$) can be determined from the ideal gas law:

$$
P_{\text {total }}=\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure ($P_{\text {total }}$) can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161.4 \mathrm{~atm}
\end{aligned}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure ($P_{\text {total }}$) can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161.4 \mathrm{~atm}
\end{aligned}
$$

Find mole fractions for each gas:

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure ($P_{\text {total }}$) can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161.4 \mathrm{~atm}
\end{aligned}
$$

Find mole fractions for each gas:

$$
X_{\mathrm{N}_{2}}=\frac{n_{\mathrm{N}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{186 \mathrm{~mol}}{331 \mathrm{~mol}}=0.561_{9} \text { and } X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{145 \mathrm{~mol}}{331 \mathrm{~mol}}=0.438_{1}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure $\left(P_{\text {total }}\right)$ can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161.4 \mathrm{~atm}
\end{aligned}
$$

Find mole fractions for each gas:

$$
X_{\mathrm{N}_{2}}=\frac{n_{\mathrm{N}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{186 \mathrm{~mol}}{331 \mathrm{~mol}}=0.561_{9} \text { and } X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{145 \mathrm{~mol}}{331 \mathrm{~mol}}=0.438_{1}
$$

Find partial pressures from mole fractions and $P_{\text {total }}$:

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank? What is the total pressure in the tank?

Alternative Solution: Solve for the partial pressures of each gas using mole fractions.
The total pressure ($P_{\text {total }}$) can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(297 .{ }_{15} \mathrm{~K}\right)}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161.4 \mathrm{~atm}
\end{aligned}
$$

Find mole fractions for each gas:

$$
X_{\mathrm{N}_{2}}=\frac{n_{\mathrm{N}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{186 \mathrm{~mol}}{331 \mathrm{~mol}}=0.561_{9} \text { and } X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{145 \mathrm{~mol}}{331 \mathrm{~mol}}=0.438_{1}
$$

Find partial pressures from mole fractions and $P_{\text {total }}$:

$$
\begin{aligned}
& P_{\mathrm{N}_{2}}=X_{\mathrm{N}_{2}} P_{\text {total }}=(0.5619)(161.4 \mathrm{~atm})=90.7 \mathrm{~atm} \\
& P_{\mathrm{O}_{2}}=X_{\mathrm{O}_{2}} P_{\text {total }}=\left(0.438_{1}\right)(161.4 \mathrm{~atm})=70.7 \mathrm{~atm}
\end{aligned}
$$

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol}
\end{aligned}
$$

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol}
\end{aligned}
$$

$\mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}$
$=\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}$
$\mathrm{n}_{\mathrm{N}_{2}}=0.0352_{1} \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Ar}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{N}_{2}} & =0.0352_{1} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Ar}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

If we open the stopcocks, the total volume changes to 4.50 L . Now solve for new pressures:

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{N}_{2}} & =0.0352_{1} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Ar}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

If we open the stopcocks, the total volume changes to 4.50 L . Now solve for new pressures:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{CO}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.130_{7} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{CO}_{2}} & =0.710 \mathrm{~atm}
\end{aligned}
$$

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\mathrm{n}_{\mathrm{CO}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}
$$

$$
\mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}
$$

$$
=\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}
$$

$$
\mathrm{n}_{\mathrm{N}_{2}}=0.0352_{1} \mathrm{~mol}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Ar}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

If we open the stopcocks, the total volume changes to 4.50 L. Now solve for new pressures:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{CO}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.130_{7} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{CO}_{2}} & =0.710 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{H}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0352_{1} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{H}_{2}} & =0.191 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Ar}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0940_{5} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{Ar}} & =0.511 \mathrm{~atm}
\end{aligned}
$$

