PRACTICE PROBLEMS

DR. MIOY T. HUYNH | YALE UNIVERSITY CHEMISTRY 165B | SPRING 2019 WWW.MIOY.ORG/CHEM165

(1) <u>KINETICS</u> (2) EQUILIBRIUM (3)<u>ACID-BASE</u> (4)<u>THERMODYNAMICS</u> (5) <u>ELECTROCHEMISTRY</u> (6) NUCLEAR CHEMISTRY (7) ORGANIC CHEMISTRY (8) <u>BIOCHEMISTRY</u> (9) TRANSITION METALS

TABLE OF CONTENTS

Consider the reaction between nitrogen monoxide and hydrog

 $2 \text{ NO (g)} + 2 \text{ H}_2(\text{g}) \rightarrow \text{N}_2(\text{g}) + 2 \text{ H}_2\text{O}(\text{g})$

Given the following initial rates data collected at 300 K, dete rate law for the reaction.

gen gases:	Expt.	[NO] ₀ (M)	[H ₂] ₀ (M)	Initial Rate (M/
	1	0.0060	0.0010	1.8×10^{-4}
ermine the	2	0.0060	0.0020	3.6 × 10 ⁻⁴
	3	0.0010	0.0060	3.0 × 10 ⁻⁵
	4	0.0020	0.0060	1.2×10^{-4}

Consider the reaction between nitrogen monoxide and hydrog

 $2 \text{ NO (g)} + 2 \text{ H}_2(\text{g}) \rightarrow \text{N}_2(\text{g}) + 2 \text{ H}_2\text{O}(\text{g})$

Given the following initial rates data collected at 300 K, dete

rate constant k (value and units) for the reaction.

gen gases:	Expt.	[NO] ₀ (M)	[H ₂] ₀ (M)	Initial Rate (M/
	1	0.0060	0.0010	1.8×10^{-4}
ermine the	2	0.0060	0.0020	3.6 × 10 ⁻⁴
	3	0.0010	0.0060	3.0 × 10 ⁻⁵
	4	0.0020	0.0060	1.2×10^{-4}

The following concentration-time data are plotted below for the decomposition of nitrogen dioxide gas at 298 K. $2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + \text{O}_2(g)$

What is the order of the reaction with respect to [NO₂]?

Consider the decomposition of NO_2 (g) from Problem 1.3:

 $2 \operatorname{NO}_2(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$

Which of the following proposed mechanism(s) is (are) <u>not valid</u>? Justify your choice briefly.

(i)	$NO_2 \rightarrow NO + O$	(slow)
	$NO_2^- + O \rightarrow NO + O_2$	(fast)
(ii)	$NO_2 + NO_2 \rightleftharpoons N_2O_4$	(fast)

$$N_{2}O_{4} \rightarrow NO + NO_{3} \qquad (slow)$$

$$NO_{3} \rightarrow NO + O_{2} \qquad (fast)$$

(iii)
$$NO_2 + NO_2 \rightarrow NO + NO_3$$
 (slow)
 $NO_3 \rightarrow NO + O_2$ (fast)

Consider the decomposition of NO_2 (g) from Problem 1.3 and 1.4: $2 \operatorname{NO}_2(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$ The initial concentration of $[NO_2]_0 = 5.56 \times 10^{-3}$ M. After 500 s have elapsed, the concentration of NO_2 is 4.14×10^{-4} M. Calculate the rate constant k (value and units) for the reaction. - answer -

EQUILIBRIUM: PROBLEM 2.1

Consider the following gaseous equilibrium: $2 H_2 S (g) \rightleftharpoons 2 H_2 (g) + S_2 (g)$ A 10.0 L vessel contains 10.0 atm of H_2S gas at 800 K initially. If the partial pressure of S_2 gas is 0.020 atm at equilibrium, what is the value of K_c ?

EQUILIBRIUM: PROBLEM 2.2

Which of the following changes would increase the concentration of $[H_2]$ in the following chemical equilibrium? $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$; $\Delta H = +131 \text{ kJ}$

ACID-BASE: PROBLEM 3.1

Benzoic acid (C₆H₅COOH) is a weak acid with a $K_a = 6.25 \times 10^{-5}$ at 298 K.

What is the pH of a 125 mL solution of 0.10 M C_6H_5COOH ?

ACID-BASE: PROBLEM 3.2

Hydrazoic acid (N₃H) is a weak acid with a $K_a = 1.9 \times 10^{-5}$ at 298 K. To 100. mL of 0.25 M N₃H we add 0.50 g of NaOH. What is the pH of the resulting solution? You may assume no change in volume or temperature. - answer -

ACID-BASE: PROBLEM 3.3

A buffer with pH = 4.87 is made from 10.0 mL of 0.75 M acetic acid (CH₃COOH) and 5.0 mL of 2.0 M sodium acetate (NaCH₃COO). Acetic acid is a weak acid with a $K_a = 1.8 \times 10^{-5}$ at 298 K. Calculate the pH of the solution if 0.00010 mol of NaOH are added to the buffer. You may assume no change in volume or temperature. - answer -

THERMODYNAMICS: PROBLEM 4.1

Consider the following reaction:

 $CaSO_4 \cdot 2H_2O(s) \rightarrow CaSO_4(s) + 2H_2O(g)$

Given the following thermodynamic data at 25 °C, calculate the standard Gibbs free energy change (ΔG_{rxn}^{o}) at 25 ° C.

- answer -

There are two ways to find the value of ΔG_{rxn}^{o} :

	CaSO ₄ ·2H ₂ O (s)	CaSO ₄ (s)	H ₂ O (g)
$\Delta G_{\rm f}^{\rm o} \left(\frac{\rm kJ}{\rm mol}\right)$	-1797.4	-1322.0	-228.6
$\Delta H_{\rm f}^{\rm o} \left(\frac{\rm kJ}{\rm mol}\right)$	-2022.6	-1434.5	-241.8
$S^{\circ}\left(\frac{J}{\mathrm{mol}\cdot\mathrm{K}}\right)$	194.1	106.5	188.8

THERMODYNAMICS: PROBLEM 4.2

Consider the following decomposition reaction:

 $2 \text{ HgO}(s) \rightarrow 2 \text{ Hg}(l) + O_2(g)$

Given the following thermodynamic data at 25 °C, determine if the decomposition reaction is spontaneous at 800 K.

	HgO (s)	Hg (I)	O ₂ (g)
$\Delta G_{\rm f}^{\rm o} \left(\frac{\rm kJ}{\rm mol}\right)$	-58.5	0	0
$\Delta H_{\rm f}^{\rm o} \left(\frac{\rm kJ}{\rm mol}\right)$	-90.83	0	0
$S^{\circ}\left(\frac{J}{\mathrm{mol}\cdot\mathrm{K}}\right)$	70.29	75.9	205.0

ELECTROCHEMISTRY: PROBLEM

Using the following table of standard reduction potentials, we the following redox reactions represent spontaneous reaction place in a voltaic/Galvanic cell?

- answer -

 Redox Reaction

 (a) Mn (s) + Sn²⁺ (aq) → Mn²⁺ (aq) + Sn (s)

 (b) Mn (s) + Ni²⁺ (aq) → Mn²⁺ (aq) + Ni (s)

 (c) Mn (s) + 2 Na⁺ (aq) → Mn²⁺ (aq) + 2 Na (s)

 (d) 3 Mn (s) + 2 Al³⁺ (aq) → 3 Mn²⁺ (aq) + 2 Al (s)

 (e) Mn (s) + 2 Ag⁺ (aq) → 3 Mn²⁺ (aq) + 2 Ag (s)

1 5.1			
which of	Half-reaction	E° (V)	
ns taking	$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.800	
	Sn^{2+} (aq) + 2 e ⁻ \rightarrow Sn (s)	-0.136	
	Ni²+ (aq) + 2 e⁻ → Ni (s)	-0.257	
	Mn²+ (aq) + 2 e⁻ → Mn (s)	-1.185	
	$AI^{3+}(aq) + 3 e^- \rightarrow AI(s)$	-1.662	
	Na+ (aq) + e ⁻ → Na (s)	-2.710	

Spontaneous?

ELECTROCHEMISTRY: PROBLEM 5.2

A voltaic/Galvanic cell is made from a compartment with 1.20 M Fe(NO₃)₃ and 1.10 M Fe(NO₃)₂, a compartment with 0.95 M Cr(NO₃)₂ and 1.00 M Cr(NO₃)₃, both at 25 °C, connected by a wire, salt bridge, and two platinum electrodes. Calculate the initial potential of this cell.

Half-reaction	E° (V)
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.770
$Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq)$	-0.410
Fe^{2+} (aq) + 2 $e^{-} \rightarrow Fe$ (s)	-0.447
Cr^{3+} (aq) + 3 e ⁻ \rightarrow Cr (s)	-0.740

ELECTROCHEMISTRY: PROBLEM 5.3

Sodium metal (Na) can be obtained by electrolyzing molten NaCl. What mass of sodium metal can be produced when molten NaCl is electrolyzed for 10.3 hours with 5.13 A of current?

Half-reaction	<i>E</i> ° (V)
$Cl_2(g) + 2 e^- \rightarrow 2 Cl^-(aq)$	+1.358
Na+ (aq) + e⁻ → Na (s)	-2.710

NUCLEAR CHEMISTRY: PROBLEM 6.1

For each of the following nuclides, predict the types of radioactive decay and reactants/products of such decays.

	Nuclide		
(a)	³⁷ Ca		
(b)	34p		
(c)	212 Fr		
(d)	¹²⁹ Sb		

NUCLEAR CHEMISTRY: PROBLEM 6.2

A ⁸B nuclide decays into a ⁸Be nuclide through positron emission. Calculate the energy produced from this type of radioactive decay based on the following masses: ⁸B (8.02460 amu), ⁸Be (8.00530 amu), and $^{0}_{+1}\beta$ (0.00055 amu). 1 amu = 1.6605 × 10⁻²⁷ kg c = 3.00 × 10⁸ m/s 1 J = 1 kg $\cdot \frac{m^2}{s^2}$ Recall:

NUCLEAR CHEMISTRY: PROBLEM 6.3

A piece of paper from an ancient scroll undergoes ¹⁴C-decay with a rate of 9.07 decays/min. A fresh piece of paper also undergoes ¹⁴C-decay but with a rate of 13.6 decays/min. If the half-life for ¹⁴C-decay is 5730 years, how old is the scroll?

For the two compounds shown below, identify if the following functional groups are present.

		Functional Group	
	(a)	Alcohol	HO
	(b)	Amide	γ
	(c)	Carboxylic Acid	
	(d)	Amine	
•	(e)	Ester	
	(f)	Alkyne	
	(g)	Ether	
	(h)	Alkene	$ \land \forall \land \land$
	(i)	Aldehyde	
	(j)	Ketone	

Choose the possible product(s) for the reaction between pentane and Cl₂ using UV radiation.

Choose the possible product(s) for the addition reaction between 2-pentene and Cl₂.

Choose the possible product(s) for the addition reaction between 2-pentene and HCI.

Choose the possible product(s) for the addition reaction between 2-methyl-2-butene, water, and an acid catalyst.

Which of the following compounds could be oxidized to produce a ketone?

Which of the following compound could be mixed with NaOCH₃ to make compound 16?

Which of the following compounds could exhibit geometric isomerism?

Which of the following compounds contains a chiral carbon center?

Choose any two compounds that can be mixed together with an acid catalyst to produce an ester via condensation.

BIOCHEMISTRY: PROBLEM 8.1

The Haworth projection for the D-Idose pyranose is shown below. Which is the correct Fischer projection for D-Idose?

BIOCHEMISTRY: PROBLEM 8.2

The trisaccharaides maltotriose, melezitose, and kestose are shown below. Which is a reducing sugar? – *answer* –

Maltotriose

BIOCHEMISTRY: PROBLEM 8.3

The tripeptide shown below is comprised of three amino acids. Which amino acid would travel the farthest toward the positive

electrode during electrophoresis with a pH = 6 buffer.

TRANSITION METALS: PROBLEM 9.1

Dichlorobisoxalatocobaltate(III) can exist as three optical isomer. One is drawn below. Draw the other two stereoisomers.

TRANSITION METALS: PROBLEM 9.2

You have three colored solutions: (1) violet, (2) yellow, and (3) green. Match each of the colored solutions (1–3) to the corresponding complex ions: (a) $[Cr(NH_3)_6]^{3+}$, (b) $[Cr(H_2O)_6]^{3+}$, and (c) $[Cr(H_2O)_4Cl_2]^+$. Spectrochemical series: $CN^- > NO_2^- > CN^- > en > NH_3 > H_2O > F^- > CI^- > Br^- > I^-$

TRANSITION METALS: PROBLEM 9.3

For each pair of complex ions, determine: (a) the number of 3d electrons and oxidation state, (b) if each is high- or low-spin, (c) if each is paramagnetic or diamagnetic, and (d) the magnetic moment (μ_{eff}). Spectrochemical series: $CN^- > NO_2^- > CN^- > en > NH_3 > H_2O > F^- > CI^- > Br^- > I^-$

- answer -

	Complex ions	No. 3d electrons?	Spin?
(i)	$[Fe(H_2O)_6]CI_3$		

 $Na_3[Fe(CN)_6]$

 $[Co(NH_3)_6]Cl_3$ (ii)

$K_3[CoF_6]$

Magnetism?

 $\mu_{
m eff}$ (B.M.)

