

The gaseous state of matter is unique.
The particles (atoms or molecules) in the gaseous state are in constant random motion

The Gas State

As a result, the particles of a gas take up the entire volume of their container.

In contrast, liquids and solids have fixed volumes; they do not take up the entire volume of their container.

Another consequence is that the particles of a gas constantly collide with one another, and also collide against the walls of their container.

As a result, a gas will always exert a pressure (P).

BOYLE'S LAW

For a fixed amount of gas (number of moles, n , is constant) and at a fixed temperature (T):

The pressure (P) exerted by a gas is inversely proportional to the volume (V) of its container.

$$
P \propto \frac{1}{V}
$$

Part 1

AMONTON'S LAW

For a fixed amount of gas (number of moles, n , is constant) and at a fixed volume (V) :

The pressure (P) exerted by a gas is directly proportional to its temperature (T).

$$
P \propto T
$$

$$
\begin{aligned}
T & =0 \mathrm{~K} \\
& =-273.15{ }^{\circ} \mathrm{C}
\end{aligned}
$$

GAY-LUSSAC'S LAW

When gaseous reactants react to form gaseous products, the volumes of reactants and products (measured at the same temperature and pressure) will be simple integer ratios.

Examples)

- $1 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{LCl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~L} \mathrm{HCl}(\mathrm{g})$
- $2 \mathrm{LH}_{2}(\mathrm{~g})+1 \mathrm{LO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{LH}_{2} \mathrm{O}(\mathrm{g})$

AVOGADRO'S HYPOTHESIS

Equal volumes of all gases, at the same temperature and pressure, contain the same number of particles (or moles).

Part 3: Gay-Lussac's Law \& Avogadro's Hypothesis

Part 0: Temperature Calibration room temperature water
melting point of ice freezing point of water
\downarrow
Part 1: Boyle's Law
\downarrow
Part 2: Amonton's Law

Notes

1. Calibrate the temperature probe using freezing point of water.
2. Do NOT connect/disconnect the pressure sensor yourself.

Let me know when you are ready.
3. Need ~ 12 datasets for Boyle's and Amonton's Laws.
4. Amonton's Law: try to get one dataset below $0^{\circ} \mathrm{C}$.

