KINETICS: RADIOACTIVEDECAY RATES

Dr. Mioy T. Huynh | Yale University CHEMISTRY 165b \| SpRINg 2019

WWW.MIOY.ORG/CHEM765

PRACTICE PROBLEM 1

${ }^{60} \mathrm{Co}$ decays with a half-life of 5.27 years to produce ${ }^{60} \mathrm{Ni}$. Calculate the fraction of original sample of ${ }^{60} \mathrm{Co}$ that will remain after 15 years has passed.

- answer -

PRACTICE PROBLEM

${ }^{60} \mathrm{Co}$ decays with a half-life of 5.27 years to produce ${ }^{60} \mathrm{Ni}$. Calculate the fraction of original sample of ${ }^{60} \mathrm{Co}$ that will remain after 15 years has passed.

- answer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the fraction:

$$
\frac{N_{t}}{N_{0}}=0.5^{\frac{t}{t_{1 / 2}}}
$$

PRACTICE PROBLEM

${ }^{60} \mathrm{Co}$ decays with a half-life of 5.27 years to produce ${ }^{60} \mathrm{Ni}$. Calculate the fraction of original sample of ${ }^{60} \mathrm{Co}$ that will remain after 15 years has passed.

- answer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the fraction:

$$
\begin{aligned}
\frac{N_{t}}{N_{0}} & =0.5^{\frac{t}{t_{1 / 2}}} \\
& =0.5^{\frac{15 \mathrm{yr}}{5.27 \mathrm{yr}}} \\
\frac{N_{t}}{N_{0}} & =0.139
\end{aligned}
$$

PRACTICE PROBLEM 2

${ }^{239} \mathrm{Pu}$ decays with a half-life of $t_{1 / 2}=2.41 \times 10^{4}$ years. Calculate the time it would take for a sample of ${ }^{239} \mathrm{Pu}$ to decay to 2.5% of its original population.

PRACTICE PROBLEM 2

${ }^{239} \mathrm{Pu}$ decays with a half-life of $t_{1 / 2}=2.41 \times 10^{4}$ years. Calculate the time it would take for a sample of ${ }^{239} \mathrm{Pu}$ to decay to 2.5% of its original population.

- anscer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the time:

$$
t=-\frac{t_{1 / 2}}{\ln 2} \ln \frac{N_{t}}{N_{0}}
$$

PRACTICE PROBLEM 2

${ }^{239} \mathrm{Pu}$ decays with a half-life of $t_{1 / 2}=2.41 \times 10^{4}$ years. Calculate the time it would take for a sample of ${ }^{239} \mathrm{Pu}$ to decay to 2.5% of its original population.

- anscer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the time:

$$
\begin{aligned}
t & =-\frac{t_{1 / 2}}{\ln 2} \ln \frac{N_{t}}{N_{0}} \\
& =-\frac{2.41 \times 10^{4} \mathrm{yr}}{\ln 2} \ln \frac{2.5}{100} \\
t & =1.28 \times 10^{5} \mathrm{yr}
\end{aligned}
$$

